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The necessary background for the analysis of complex-valued electron-density

maps is established. Various systems of structure-factor equations of convolu-

tional type akin to Sayre's squaring method equations are tested for agreement

on the real and imaginary parts of the electron density as well as approximations

thereof. A system of convolutional structure-factor equations holding in a

complex-valued electron density generated by two atom types is developed. The

scope of application of these equations is determined and it is shown that the

equations provide a method of extrapolating high-resolution phases from a low-

resolution base phase set without introducing further model bias. Additional

applications to phase re®nement are explored.

1. Introduction

Although the Sayre equations (Sayre, 1952) represent the

theoretical cornerstone of the so-called direct methods, their

application to phase determination in actual macromolecular

structures has been relatively limited (cf. Sayre, 1974; Zhang &

Main, 1990; Shiono & Woolfson, 1991; Refaat et al., 1995).

Geometrically, the Sayre equations are derived from the

assumption that the electron density consists of the sum of a

number of smaller, identical and non-interpenetrating elec-

tron densities. This `atomicity', however reasonable in prin-

ciple, necessarily limits the scope of application of these

equations. Generalizations of the Sayre equations have been

developed that partially overcome the equi-atom requirement

(cf. Woolfson, 1958; Rothbauer, 1980, 2000).

Experimental phasing techniques such as the multiple-

wavelength anomalous-dispersion method (MAD)

(Hendrickson, 1991) are predicated on the existence of

anomalously scattering atoms. Typically, these atoms will

severely violate the equi-atom assumption of the Sayre

equations, consequently limiting their effectiveness. In some

cases, anomalous-scattering information from a single wave-

length (SAD) in conjunction with direct methods (or other

techniques) is suf®cient for structure determination. The

series of ®ve papers by Fan et al. beginning with Fan, Han,

Qian & Yao (1984) and Fan, Han & Qian, (1984) as well as

Wang (1985) and Brodersen et al. (2000) investigate this

problem. Direct methods that exploit the additional complex

structure of the electron density induced by anomalous scat-

tering should prove useful in this pursuit.

In this work, convolutional structure-factor equations are

developed that are a more appropriate representation of the

situation commonly encountered in the use of MAD phasing

in macromolecular crystallography. Based on the general-

ization of the Woolfson approach, these equations assume that

the complex-valued density maps are generated by two atom

types. One atom type is intended to model large anomalously

scattering atoms in the heavy-atom substructure and the other

meant to represent the lighter atoms. The resolution range

where the new system of equations holds is delineated and the

capabilities of the system for phase extrapolation and re®ne-

ment are investigated.

In particular, it is shown that given a reasonably correct set

of experimental phases the new system of equations can

extrapolate phases to high resolution of comparable quality

to experimental phases. These extrapolated phases have the

additional advantage of limiting model bias that would be

introduced in model-based phase extension.

We conclude that convolutional structure-factor equations

modelling complex electron-density maps afford accurate

extrapolations ± in some cases superior to those based on

model coordinates. Such extrapolations should be of consid-

erable value in determining unbiased phases for high-resolu-

tion data measured to extend the resolution of a structure.

Re®nement of phases is less tractable. The residual of the

convolutional structure-factor equations alone is insuf®cient

to support signi®cant phase re®nement of large structures at

typical resolutions. Nevertheless, the ability to model

complex-valued density provides new insights into the disap-

pointing performance of phase re®nements based on mini-

mizing the least-squares magnitude of the residual of

convolution-type structure-factor equations.

1.1. Complex-valued electron density

It is well known that in the absence of anomalous scattering

the structure factors satisfy a particular type of Hermitian

symmetry described by Friedel's law, viz
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Fÿh � �Fh:

This observation implies that the electron density takes only

real values. More generally, however, the presence of anom-

alous scattering introduces complex-valued corrections into

the electron density and consequently the electron density is

composed of a real part and a signi®cantly weaker imaginary

part.

The structure factors of the real and imaginary electron

density, FR
h and FI

h respectively, are calculated from the

available structure factors as follows:

FR
h �

Fh � �Fÿh

2
FI

h �
Fh ÿ �Fÿh

2i
:

Note that if the Friedel law holds then all the structure factors

of the imaginary part vanish and the structure factors of the

real part are equal to the structure factors of the whole elec-

tron density.

In general, the imaginary anomalous corrections will be

smaller than the real scattering, thus the imaginary density will

be signi®cantly weaker than the real density. However, the

imaginary density has certain properties of interest to the

study of Sayre-type equations. In particular, the relatively

large imaginary anomalous corrections will be associated with

the strongest anomalous scatterers. Therefore, the imaginary

density will concentrate around these atoms. Furthermore,

these atoms will typically be of a similar type and be posi-

tioned distant enough from one another to be separated at

relatively low resolution, thus providing an electron density

highly suited to the equal-atomicity assumptions of Sayre-type

equations.

Two limitations remain. First, a complete set of structure

factors, both Fh and Fÿh, is necessary to calculate the structure

factors of the real and imaginary parts of the electron density.

Second, the phases of the imaginary part are not directly

related to the phases of the real part and therefore informa-

tion gained from the imaginary electron density will be dif®-

cult to apply to the real, and more important, part of the

electron density. In light of these observations, in the sequel

we develop an approximation to the electron density requiring

phases for only one of a Friedel-related pair of re¯ections. This

approximation has the property that the phases of its real part

are directly related to the phases of its imaginary part and

potentially affords a means of estimating the phases of the real

map from the phases of the imaginary map.

1.2. Friedel-average and Bijvoet-difference maps

Although the anomalous-scattering data gives the ampli-

tudes jFhj and jFÿhj for both halves of reciprocal space

determined by the Friedel Hermitian symmetry, typically

phases are determined, experimentally or otherwise, for only

one asymmetric unit, i.e. 'h. The following construction

(Kraut, 1968) provides a method of simulating this situation

when both 'h and 'ÿh are known. Let '0
h be de®ned for any h

in reciprocal space by

'0
h �

'h for 'h � 'ÿh � �
�'h ÿ 'ÿh�=2 otherwise.

�
Note that angle � � ÿ�, thus, in either case, '0

ÿh � ÿ'0
h.

Consequently, one half of the approximate phases determines

the other half.

Consider an electron density ~� de®ned by the structure

factors

~Fh � jFhj exp�i'0
h�: �1�

This density approximates the true electron density. Like the

true density, it does not satisfy the Friedel law and thus it takes

both real and imaginary values. The imaginary part of this

electron density is the Bijvoet-difference Fourier as de®ned by

Kraut (1968). The structure factors of this map for any h are

~FI
h � �1=2i��jFhj ÿ jFÿhj� exp�i'0

h�:
Note that the i in the denominator of the Bijvoet-difference

structure factor causes the well known, though under-appre-

ciated, phase shift of ÿ�=2. The structure factors of the real

part of this map for any h are

~FR
h � 1

2 �jFhj � jFÿhj� exp�i'0
h�:

For lack of more compelling terminology, the real part will be

called the Friedel-average Fourier.

1.3. Approximation quality

In order to use these approximate maps intelligently, their

precise nature as approximations must be determined. Note

that the structure factors of the two maps are related by a

particular rotation:

Fh � jFhj exp�i'h� � jFhj exp�i�'h ÿ '0
h � '0

h�� � ~Fh exp�i"h�;
where

"h �
0 when 'h � 'ÿh

�'h � 'ÿh�=2 otherwise.

�
These equations determine a complex-valued map with the

following real and imaginary parts (here h� denotes one

particular half of the reciprocal space determined by Friedel's

law):

~��x� �P
h�
��<Fh � <Fÿh� cos�2�h � x�

ÿ �=Fh ÿ =Fÿh� sin�2�h � x�� cos�"h�
�P

h�
��=Fh � =Fÿh� cos�2�h � x�

� �<Fh ÿ<Fÿh� sin�2�h � x�� sin�"h�
= ~��x� �P

h�
��=Fh � =Fÿh� cos�2�h � x�

� �<Fh ÿ<Fÿh� sin�2�h � x�� cos�"h�
�P

h�
��<Fh � <Fÿh� cos�2�h � x�

ÿ �=Fh ÿ =Fÿh� sin�2�h � x�� sin�ÿ"h�:

�2�

Note the real and imaginary parts of the true density:



<��x� �P
h�
��<Fh � <Fÿh� cos�2�h � x�

ÿ �=Fh ÿ =Fÿh� sin�2�h � x��
=��x� �P

h�
��=Fh � =Fÿh� cos�2�h � x�

� �<Fh ÿ <Fÿh� sin�2�h � x��

�3�

are intertwined in (2) with respect to the sine and cosine of "h.

When "h is close to zero, the value of cos "h is close to one and

the value of sin��"h� is close to zero. Therefore, when all the

"h are close to zero, the approximation will most closely

resemble the true complex-valued electron density. In parti-

cular, the Friedel average will approach the real part and the

Bijvoet difference will approach the imaginary part.

Recall, however, that the imaginary density is in general

weaker than the real density. Therefore, even for small values

of "h the presence of the real part of the map in the Bijvoet

difference can cause signi®cant corruption. This is not a

concern with the Friedel-average map where the weak

imaginary density is further diminished by the values of

sin��"h�. Since the f"hg are the phase differences between the

true and approximate phases, they are potentially useful in

estimating the difference between the true imaginary map and

the Bijvoet-difference map.

These observations are illustrated by an example. Consider

a test system based on the atomic coordinates for tetragonal

hen egg white lysozyme (Protein Data Bank ID 193L) where

all the sulfur atoms are replaced by selenium. The map

correlation coef®cient between the true real map and the

Friedel-average approximation is 0.9931 whereas the map

correlation coef®cient between the true imaginary map and

the Bijvoet-difference approximation is only 0.4617. Although

the agreement between the imaginary density and the Bijvoet-

difference Fourier appears very weak, bear in mind that the

Bijvoet-difference Fourier does, in fact, locate the large

anomalous scatterers and at reasonable contour levels the

maps of the imaginary density and the Bijvoet-difference

Fourier look very similar, cf. Fig. 1. Therefore, it is important

to recognize that the Bijvoet-difference map is a good

approximation to the imaginary density around the large

anomalous scatterers; however, throughout the comparatively

larger volume of the entire unit cell the approximation is of a

lower quality.

2. Convolutional structure-factor equations

The original convolutional structure-factor equations, the

Sayre equations (Sayre, 1952), stem from the assumption that

the electron density consists of a ®nite number of identical

non-overlapping atoms. They take an appealingly simple

formulation:

Fh � ah

P
k

FkFhÿk ah real

and have led to extensive theoretical development; the sign

and triplet relationships and tangent formula all make use of

the Sayre equations. Further use is being made in connection

with bulk solvent correction (Guo et al., 2000).

Unfortunately, the equi-atom structure assumption can be

somewhat restrictive. In this regard, Woolfson (1958) devel-

oped a generalized system of convolutional structure-factor

equations that take into account two different atom types. This

system,

Fh � bh

P
k

FkFhÿk � ch

P
l

P
k

FlFkFhÿkÿl; bh; ch real;

proved to be well suited for polypeptide crystals containing

some heavy atoms (Shiono & Woolfson, 1991). Note that, if all

ch vanish, the system of equations becomes equivalent to that

of Sayre.

Although the Woolfson equations have been generally

applied to macromolecular crystals containing metals, even

structures consisting of only C, N and O atoms can bene®t. In

general, the O atoms corresponding to solvent water will have

signi®cantly larger temperature (Debye±Waller) factors than

O atoms corresponding to a protein. The difference in

temperature factors will introduce, loosely speaking, two atom

types: a generic protein-atom type and a generic solvent-atom

type. In this case, the two-atom-type approximation can be

used to more accurately represent the distinction between

solvent and protein.

Since both systems of equations described above are

derived from ideal circumstances, it is not clear exactly how

well they hold with actual structures. One test of agreement is

to consider the correlation between the map of a known

structure and the map determined from the right-hand side of

the equation calculated with the correct structure factors.

Consider the real density of the model system derived from

lysozyme where all the sulfur atoms are replaced by selenium.

The agreement of the two systems of equations, described as

a map correlation coef®cient, were determined at various

resolutions from 1.5 to 3.0 AÊ . Results are summarized in

Fig. 2(a). In these calculations, the ah parameters of the Sayre

equations were determined based on a carbon atom with

average temperature factor. The bh and ch parameters of the

Woolfson equations were determined using a temperature-

factor-averaged carbon atom and a temperature-averaged

selenium atom. The convolutions were calculated up to the

given resolution with fast Fourier transforms.

It is clear from the ®gure that strong agreement in the

equations for the real density requires both multiple atom

types and relatively high (greater than 2.0 AÊ ) resolution.

The imaginary density much more closely satis®es the

hypotheses of the convolutional structure-factor equations. In

particular, in this case the selenium atoms are the only

signi®cant anomalous scatterers and they are reasonably

separated in the unit cell. Although it is necessary only to

consider the Sayre equations, the agreement of the equations

on true imaginary density and Bijvoet-difference Fourier

differs. The great advantage of the Bijvoet-difference Fourier

is that correctly determined phases could be used to determine

correct phases for the Friedel average, a close approximation

to the real density. The correlation coef®cients for the two

maps are found in Fig. 2(b). Parameters for the Sayre equa-
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tions are based on the imaginary anomalous corrections

associated with selenium for Cu K� radiation.

Unlike the Bijvoet-difference Fourier, the imaginary

density has strong agreement at all resolutions. The weak

agreement in the Bijvoet-difference Fourier indicates that the

ah values determined for the imaginary part are not well suited

for the Bijvoet-difference Fourier. Although it might be

possible to determine more suitable equation parameters, the

problem remains that there are many fewer non-zero structure

factors for the Bijvoet-difference map than for the imaginary

map. This is because Friedel-related pairs with the same

amplitude and different phases determine a structure factor of

0 in the Bijvoet difference. In the imaginary density, structure

factors of 0 occur only if the amplitudes of the Friedel-related

pairs are the same and the phases differ by �.

3. Extrapolation of phases via convolutional structure-
factor equations

In light of the previous section, it is possible to de®ne a set of

convolutional structure-factor equations intended to model a

complex density that consists of two types of atoms: heavy

atoms, e.g. selenium, with large imaginary anomalous correc-

tions and lighter carbon-like atoms with very slight imaginary

anomalous corrections. Such a system of equations differs

from the two-atom system of Woolfson in the fact that the

parameters are complex numbers re¯ecting the complex

scattering of the two atom types.

Our ®rst application of the system:

Fh � bh

P
k

FkFhÿk � ch

P
l

P
k

FlFkFhÿkÿl �4�

with bh, ch complex will be to choose phases to accompany

known amplitudes lying above a ®xed low-resolution

threshold. It is assumed that the phases of resolution lower

than the threshold are essentially correct.

Let R be the set of re¯ections h within a particular reso-

lution sphere. Consider the expression

Gh � bh

P
k2R

FkFhÿk � ch

P
l2R

P
k2R

FlFkFhÿkÿl: �5�

Provided h is not far outside R, the phase of Gh together with

the known amplitude jFhj should be a reasonable approxi-

mation to Fh. These extrapolated structure factors produce a

complex-valued electron density approximating the true

density.

Of course, the further h lies outside R, the more susceptible

this approximation becomes to truncation errors, i.e. due to Fk

excluded from the summations when k =2R, indicating that

stepwise extrapolation is more likely to lead to quality phases.

However, improvements gained by reducing the truncation

error must be balanced by the cumulative error introduced at

each step.

This procedure should be compared with the practice of

extending the resolution of a structure solved at lower reso-

lution by measuring structure-factor amplitudes at higher

resolution and generating phases from the lower-resolution

model. The essential difference is that the new phases are

derived from a basis phase set and not an atomic model. In

fact, good experimental phases should be preferable as a basis

for phase extrapolation. Unlike experimental phases, phases

constructed from a pre-existing lower-resolution model will be

biased toward the original model. Therefore, if the initial low-

resolution phases are experimentally determined, extrapola-

tion will produce higher-resolution phases without model bias.

We illustrate in x3.2 that one effect of such a model bias is to

omit density around solvent molecules not in the low-resolu-

tion model.

3.1. Extrapolation from a model structure

The model lysozyme system where the sulfur atoms are

replaced by selenium provides the ®rst test of the extrapola-

tion via the set of convolutional structure-factor equations (4).

Assume that the amplitudes to 1.5 AÊ are given. The basis

phase set will be the phases of the ~� approximation below a

given lower-resolution limit, e.g. 2.0 AÊ . The convolutional

structure-factor equations (2) give approximations to the true

phases.

Proceeding in 0.25 AÊ increments, the extrapolation is

applied from three low-resolution thresholds: 2.0, 2.5 and

3.0 AÊ . It is readily apparent from the phase errors and map

correlation coef®cients of the real map (Table 1) that error

introduced in the extrapolation remains reasonable even from

as far as 3.0 AÊ . The small phase errors occurring at low reso-

lution due to the approximation ~�, cf. equation (1), provide a

good basis for extrapolation. Figs. 3(a)±(c) give an impression

of the general degradation occurring in the electron density

when extrapolating from larger distances. For the most part,

the maps are quite reasonable. One particularly interesting

aspect of the extrapolation is that it appears to intensify the

heavy-atom effects, in this case diminishing the density of the

smaller atoms surrounding the selenium.

3.2. Extrapolation from experimental data

Extrapolations from experimental data are of signi®cantly

more interest than extrapolation from an essentially correct

model system. An example is provided by the TrpRs-50AMP

complex (Retailleau et al., 2001). A set of 2.0 AÊ model-inde-

pendent SAD phases produced by SHARP (La Fortelle &

Bricogne, 1997) and processed by Solomon (Abrahams &

Leslie, 1996) is used as a starting point for generating

approximate phases for measured amplitudes between 2.0 and

1.7 AÊ from the convolutional structure-factor equations (4).

Table 1
Extrapolation from model phases with errors in �.

Resolution 2.0±1.5 AÊ 2.5±1.5 AÊ 3.0±1.5 AÊ

1±4.0 AÊ 1.267 1.267 1.267
4.0±3.0 AÊ 0.775 0.775 0.775
3.0±2.0 AÊ 1.606 28.022 52.659
2.0±1.7 AÊ 26.019 36.080 48.296
1.7±1.5 AÊ 25.972 37.697 51.444
1±1.5 AÊ 15.372 29.478 44.237
Map correlation 0.986 0.956 0.885



The phases produced by the convolutional structure factors

are intended to be used to construct a high-resolution model

when none exists. A second set of phases between 2.0 and

1.7 AÊ was calculated for comparison from a 2.9 AÊ model

(DoublieÂ et al., 1995). These two phase sets are compared

against the ®nal high-resolution coordinate-re®ned structure

(Retailleau et al., 2001).

Phase errors and map correlation coef®cients versus the

®nal model are tabulated in Table 2. Note that the phases

extrapolated using equations (4) are signi®cantly better: in

fact, by nearly 10� in the highest-resolution shell. Because the

structure factors generating these maps differ only at high

resolution, the physical differences apparent in the respective

maps will be somewhat subtle and are expressed most

dramatically through molecules such as bound solvent. Of

particular interest are glycerol molecules which do not occur

in the low-resolution model. Figs. 4(a)±(d) show the map

extended from the low-resolution model as compared with the

extrapolation on two particular glycerol molecules. A similar

effect occurs at other large solvent molecules, in particular the

sulfates shown in Figs. 4(e)±(h). In both cases, the extrapola-

tion using the convolutional structure-factor equations

produces a fuller more accurate density.

4. Refinement via convolutional structure-factor
equations

The next application is to determine whether re®ning the

phases by enforcing agreement in the convolutional structure-

factor equations can actually improve the phases. Consider the

least-squares magnitude D of the difference between the left-

hand side and right-hand side of the system of equations (4):

D �P
h

���Fh ÿ bh

P
k

FkFhÿk ÿ ch

P
l

P
k

FlFkFhÿkÿl

���2
for bh, ch complex. Re®nement would adjust phases for the

structure factors of known amplitude so as to minimize the

size of D.

In order for this sort of re®nement to work, there must be a

strong correlation between the size of D and the phase error;

otherwise, reducing D will make little improvement on the

phases. To test this correlation, 21 structures based on the

lysozyme model were generated with phase errors randomly

distributed according to a normal distribution with mean 0 and

standard deviation ranging from 20 to 40�. The correlation

between the D values and mean phase error of the 21 test

systems is 0.9753, indicating a strong linear dependence, cf.

Fig. 5.

Although these results appear impressive, it is important to

bear in mind exactly what they establish: viz random phase

errors introduced in a correct structure weaken the agreement

in the convolutional structure-factor equations. The more

worthwhile question, does reducing D bring an incorrect

structure closer to the correct structure?, has, as yet, been

studied only inadequately.

The method of phase re®nement by minimizing the least-

squares residual of a system of convolutional structure-factor

equations was proposed by Sayre (1972) as a method of

bridging the gap between initial phasing and ®nal coordinate

re®nement. Because Sayre's squaring method equations

represent an equi-atom approximation to the electron density,

this method was not intended to provide intensive phase

re®nement. Surprisingly, the initial results of Sayre (1972)

demonstrated that re®nement by enforcing the Sayre equa-

tions signi®cantly reduced the mean phase error for computer-

generated protein-like equi-atom structures of 100 atoms. The

local re®nement method of these results has been drawn into

question in the paper by Chen & Su (2000), where simulated

annealing produces the correct phases up to certain space-

group-related limitations for several computer-generated

equi-atom systems of approximately 100 atoms. Although

these latter systems are based on actual molecules, applica-

tions to real proteins have been quite modest.

Re®nements of 2Zn pig insulin (Zhang & Main, 1990), a

protein of 806 non-hydrogen atoms, show that the Sayre

equations alone cannot improve the mean phase error of 3.0 AÊ

MIR phases. Further, using the Sayre equations to incre-

mentally extend and re®ne phases to 2.0 AÊ results in a mean

phase error considerably worse than that corresponding to

2.0 AÊ MIR phases. Nevertheless, the Sayre equations provide

a complement to density-modi®cation re®nement. In fact, the

same process of incremental extension and re®nement via the

Sayre equations accompanied with solvent ¯attening and

histogram matching produces a set of 2.0 AÊ phases slightly

more accurate than the experimental phases.

The ®rst protein submitted to this type of re®nement was

rubredoxin containing 424 non-hydrogen atoms (Sayre, 1974).

Extending an initial 2.5 AÊ experimental phase set to 1.5 AÊ via

the Sayre equations and re®ning with respect to the Sayre

equations resulted in a mean phase difference of 46.6� from a

coordinate-re®ned structure. Although this phase difference

seems large, the very promising aspect of the study was that

the method contributed to correctly identifying several non-

polar side chains that were known to be incorrect in the model

and hence a source of model bias in coordinate re®nement. In

light of the results on 2Zn pig insulin, however, this probably

did not account entirely for the substantial phase difference.

Nor is it clear that the success with rubredoxin resulted from

phase re®nement and not simply from phase extrapolation,

which we have shown in x3 to be quite accurate.

One essential obstacle to this type of re®nement is that

the convolutional structure-factor equations hold only
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Table 2
Extrapolation from experimental phases, errors in �.

Resolution Model extension Extrapolation

1±3.0 AÊ 24.275 24.275
3.0±2.5 AÊ 23.507 23.507
2.5±2.0 AÊ 24.590 24.590
2.0±1.85 AÊ 46.272 42.814
1.85±1.7 AÊ 49.484 39.700
2.0±1.7 AÊ 47.713 41.417
Map correlation 0.945 0.945
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Figure 3
Phase extrapolation based on complex-valued convolutional structure-
factor equations for a model system. The true density is represented by
the blue surface. Extrapolation based on the convolutional structure-
factor equations is shown in red. (a) Extrapolation from 2.0 AÊ provides
an excellent approximation to the true density. Note the furrows that are
beginning to form around the selenium in the lower right-hand corner.
The extrapolation intensi®es some of the effects of ®nite resolution. (b)
Extrapolation from 2.5 AÊ suffers somewhat from the disruptive effects of
®nite resolution, in particular around the selenium in the lower right-
hand corner. However, the map is of high quality overall. (c)
Extrapolation from 3.0 AÊ loses density around the smaller atoms
surrounding the heavy atom on the lower right-hand side. Figure
produced by Bobscript (Esnouf, 1997) and Raster3D (Merritt & Bacon,
1997).

Figure 2
(a) The real density map is best modelled by two atom types at high
resolution. As resolution goes down neither convolutional structure-
factor equation provides a good model for the density. (b) The single-
atom-type convolutional structure-factor equations hold well on the
imaginary density at all tested resolutions. The Bijvoet-difference Fourier
is not nearly as well modelled.

Figure 1
The Bijvoet-difference Fourier shown in red approximates the true
imaginary density shown as the blue surface. The two maps are contoured
at the same absolute level. Although the map correlation coef®cient
between the maps is only 0.4617, the Bijvoet difference accurately
determines the location of the large anomalous scatterers. Figure
produced by Bobscript (Esnouf, 1997) and Raster3D (Merritt & Bacon,
1997).



approximately for real structures. Therefore, the correct

phase set may not necessarily have the minimum value of D

among all possible phase sets. For example, the extrapola-

tion structures of the lysozyme-based model all have lower

D values than the correct structure. In this regard, it is

possible to `over-re®ne' by introducing features into the map

that are artifacts of the convolutional structure-factor

equation hypotheses, e.g. limited atom types.

The existence of false minima is not an entirely

unfamiliar situation. Certainly any optimization method

will have to effectively distinguish false minima from true

minima. Generally, however, it is assumed that the correct

structure occupies a local minimum; therefore, if the

starting point of the re®nement is close enough to the

true minimum, the false minima will play no role. The

®nal example reveals that this need not always be the

case.

Consider the lysozyme test system generated with 40�

mean phase error. This system is used as a starting point for

steepest-descent re®nement (see Appendix A) of two dif-

ferent objective functions: the D value above, denoted DC,

and the analogous D value applied to the real part of the map

only, denoted DR. Note that for DR the values of bh and ch are

real. Each D value and its corresponding mean phase error are

calculated after each cycle and displayed graphically in Fig. 6.

Within 20 cycles of re®nement, both objective functions have

decreased dramatically. Yet the mean phase error in either

case has changed by less than 2�. Apparently, in both cases, the

local minimum closest to the initial phase set is not the correct

solution.

Although neither re®nement ®nds the correct solution, it

should be emphasized that the behavior of the re®nement of

the complex-valued density differs signi®cantly from the

behavior of the re®nement of its real part. After 20 cycles, the
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Figure 4
Extrapolation from experimental phases. Low-resolution model-based extension shown in green (a, c, e and g). Extrapolation based on convolutional
structure-factor equations shown in red (b, d, f and h). The coordinate-re®ned map is represented by the blue surface. (a) Failure to connect the density
in the glycerol molecule. (b) Reasonable glycerol structure predicted. (c) Most of the glycerol structure lost. (d) An improved density compared to (c).
(e) Reasonable sulfate density. ( f ) More complete sulfate density predicted. Note both red and green densities position the sulfate differently from the
coordinate-re®ned model. (g) Weak sulfate density. (h) Extrapolation produces fuller density. Figure produced by Bobscript (Esnouf, 1997) and
Raster3D (Merritt & Bacon, 1997).



research papers

348 Roach et al. � Sayre equations and anomalous scattering Acta Cryst. (2001). A57, 341±350

re®nement of the real electron density has yet to reach a stable

point. In fact, after 40 cycles the re®nement has reduced DR to

3:055� 1010, well below that of the correct structure where

DR � 3:158� 1010. At this point, the mean phase error has

risen approximately 6.8� from the starting point. Therefore,

there exists an incorrect structure with a much lower DR than

that of the correct solution, indicating that DR alone is

insuf®cient to distinguish the correct structure from false

structures.

Although the re®nement of the complex-valued electron

density also fails to gain signi®cant phase improvement, the

sensitivity of DC to an incorrect local minimum contrasts

markedly with the pathological behavior of DR. The mean

phase error decreases monotonically to a local minimum

approximately 0.4� below the starting point after 19 cycles.

This behavior suggests that a more sophisticated algorithm

taking advantage of additional information could avoid the

local minimum and re®ne closer to the correct solutions. In the

case of the Sayre equations, Refaat et al. (1995) have

demonstrated that any phase re®nement at all with resolutions

lower than 1.5 AÊ requires more delicate treatment. The use of

unitary structure factors as well as a number of additional

constraints have lead to an improvement in the phase error by

3 to 4�.
A particularly promising modi®cation is to use an explicit

estimation of f"hg to coordinate re®nement of the Bijvoet

difference via the Sayre equations with re®nement of the real

electron density using the Woolfson generalization.

Any of these techniques could be applied mutatis mutandis

to the system of equations described here and modest

improvement could be expected. However, the potential for

the new system of equations to complement density-modi®-

cation routines such as solvent ¯attening and histogram

matching is great. Given the work of Zhang and Main and

more recent work, e.g. Foadi et al. (2000), where good results

are obtained by using the Sayre equations in conjunction with

density modi®cation, a system of equations that represents

more accurately the existence of multiple atom types and

anomalous scattering will probably lead to signi®cant phase

improvement for a wider class of problems.

5. Conclusions

It has been shown that the real and imaginary parts of a

complex-valued electron density have distinct structure and

any convolutional structure-factor equations must model them

differently. The real part of the density does not closely satisfy

the hypotheses of Sayre-type equations; thus additional atom

types and relatively high resolution are needed. In contrast,

the imaginary part of the density is highly suited for modelling

by Sayre-type equations. However, the imaginary map is

signi®cantly weaker than the real map. Consequently, any

system of convolutional structure-factor equations intended to

model a complex-valued electron density will necessarily be

dominated by the real part and therefore it is dif®cult to take

advantage of the highly suitable imaginary electron density in

applications to the overall complex density.

An alternative is to make use of some relation between the

phases of the two maps. Unfortunately, the phases of the real

map and the phases of the imaginary map are not directly

related. In response to this problem, the Bijvoet-difference

Fourier of Kraut was introduced. This map, an approximation

to the imaginary map, has the additional property that its

phases are directly related to the phases of a very close

approximation to the real part. We have shown that the

Bijvoet-difference Fourier is composed in a non-trivial

manner of both the real map and the imaginary map. More-

over, this intertwining together with the relative weakness

of the map makes the Bijvoet-difference Fourier somewhat

unsuited for analysis via convolutional structure-factor equa-

tions. Further study of the possible estimation and use of "h is

warranted in this regard.

Figure 5
A strong linear correlation between increasing the phase error of a
correct structure and the corresponding increase in D value.

Figure 6
The re®nement of D�real� fails to reach a stable point after 20 cycles.
During this period, the re®nement improves the mean phase error by less
than one degree initially and then increases the mean phase error. The
re®nement of D�complex� behaves more sensibly, reaching a local
minimum and stopping. However, it fails to improve the phase error
signi®cantly.



A variation on a system of equations of Woolfson has been

developed to represent a system composed of two atom types,

as an approximation to commonly encountered MAD and

SAD phasing experiments. One atom type corresponds to a

large real scattering contribution and a modest imaginary

anomalous correction. The second atom type corresponds to a

smaller real scattering and a negligible imaginary correction.

The new system of equations has been used to derive phases

for a set of known high-resolution structure-factor amplitudes

from a lower-resolution base phase set. This method provides

for model-independent extrapolation to higher resolution.

Furthermore, if the low-resolution base phase set is itself

experimentally determined, the high-resolution extrapolated

phases are relatively free from model bias.

Despite the surprising accuracy of phase extrapolation by

this method, it has been shown that the system of convolu-

tional structure-factor equations is insuf®cient as a sole means

of re®nement. Although the inclusion of information from the

complex structure of the density improves the re®nement

path, only slight improvement in the phases was obtained in

the test case. Signi®cant improvement, however, has been

documented using density-modi®cation techniques in

conjunction with convolutional structure-factor equations that

represent more drastic approximations to the electron density,

e.g. the Sayre equations. Therefore, it is likely that the new

system of equations will be an improved component in a suite

of complementary re®nement techniques.

APPENDIX A
Refinement computation formulae

The volume of computation necessary to successfully apply

these methods can be prohibitive if the calculations are

performed naõÈvely. In this Appendix, formulae analogous to

those found in Sayre & Toupin (1975) and Refaat et al. (1995)

are established. The principal difference between this

Appendix and previous work is that the convolutional struc-

ture-factor equations are based on Woolfson (1958) rather

than Sayre (1952); however, the assumption that the electron

density is complex valued and, consequently, that Friedel's law

fails, introduces additional pathology.

Consider the objective function

D �P
h

���Fh ÿ bh

P
k

FkFhÿk ÿ ch

P
l

P
k

FlFkFhÿkÿl

���2:
It is well known that the gradient of this objective function,

rD, can be expressed in terms of the Jacobian of a particular

system of functions of the phases 'h. For example, let

dh � Fh ÿ bh

P
k

FkFhÿk ÿ ch

P
l

P
k

FlFkFhÿkÿl

for some re¯ection h. Thus, with �z denoting the complex

conjugate of z, D can be written as

D �P
h

dh
�dh:

The gradient is then

�rD�m �
@D

@'m

�
X

h

@dh

@'m

�dh �
X

h

dh

@ �dh

@'m

� 2<
X

h

@dh

@'m

�dh

( )
� 2< JT �dh

� 	
for the Jacobian J given by

Jh;m �
@dh

@'m

:

The Jacobian can also be used, as in Sayre & Toupin (1975), to

construct a ®rst-order approximation to the Hessian.

It will be shown that the Jacobian of a particular system

decomposes into a sum of matrix representations of elemen-

tary vector operations. These elementary vector operations

can be calculated quickly using the fast Fourier transform.

Consider the so-called Hadamard product � of two vectors

u and v: �u� v�h � uhvh. Fixing the vector u, we see that the

vector operation corresponding to the Hadamard product

with u is given by multiplying the vector v with a matrix U that

has the values uh along the diagonal and zero elsewhere.

Explicitly, we have Uv � u� v. Such a matrix will be called

a matrix representation of the operation. Another common

vector operation is the inversion ��v�h � vÿh. The matrix

representing the inversion operation will be denoted T. The

two other vector operations necessary in the Jacobian

decomposition are convolution u � v and cross correlation

�u; v�. Convolution and cross correlation are given by

u � v �P
k

ukvhÿk

�u; v� �P
k

ukvh�k:

Each of these operations can be calculated quickly using the

fast Fourier transform.

The Jacobian is given by the formula

@dh

'm

� i��hÿm�Fh ÿ 2ibhFmFhÿm ÿ 3ichFm

X
k

FkFhÿkÿm;

where ��x� � 1 if and only if x � 0. Therefore, if B, C and F

denote the diagonal matrices with bh, ch and Fh along the

diagonal, respectively, and I denotes the identity matrix, we

have that

JTv � iF�I ÿ 2TX1 ÿ 3TX2�v;
where X1 and X2 are matrix representations of particular cross

correlations. If f denotes the vector of structure factors Fh and

k � f � f, then

�X1v�m � �Bv; f�m
�X2v�m � �Cv; k�m:

Consequently, the action of JT on some vector v is given by the

operations:

JTv � if � fvÿ 2���b� v; f�� ÿ 3���c� v; k��g:
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In particular, if vh � �dh, the above gives the gradient of D.

Thus, storing only three vectors b, c, f, the gradient can be

calculated with standard operations.

It is interesting to point out that when Friedel's law holds

the cross correlation and inversion operations are no longer

necessary and can be replaced by equivalent convolutions as

in Sayre & Toupin (1975).

We would like to thank David Sayre and Richard Toupin for

helpful discussions throughout the course of this work. After

this work was in the press, the authors became aware of the

work of Hendrickson & Sheriff (1987) concerning the Bijvoet-

difference Fourier. In particular, equation (2) of x1.3 is closely

related to equation (8) of the theoretical analysis of

Hendrickson & Sheriff (1987).
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